Numerical Analysis of Microstructure Development during Laser Welding Nickel-Based Single-Crystal Superalloy Part II: Multicomponent Dendrite Growth

Author:

Gao Zhi Guo1

Affiliation:

1. Anyang Institute of Technology

Abstract

A thermal metallurgical coupling model was further developed for multicomponent dendrite growth of primary γ gamma phase during laser welding nickel-based single-crystal superalloys. It is indicated that welding configuration has a predominant role on the overall dendrite trunk spacing than heat input throughout the weld pool, and modifies the dendrite growth kinetics. The dendrite trunk spacing in (001) and [100] welding configuration is finer than that of in (001) and [110] welding configuration. In (001) and [100] welding configuration, the bimodal distribution of dendrite trunk spacing is symmetrical about weld pool centerline, the dendrite trunk spacing in [100] growth region near the weld pool center is coarser than [010], [0ī0] and [001] dendrite growth regions. In (001) and [110] welding configuration, the distribution of dendrite trunk spacing is crystallographically asymmetrical, and the dendrite trunk spacing in [100] growth region is severely coarser than that of [010] and [001] dendrite growth regions. (001) and [110] welding configuration is of particular interest, because dendrite trunk spacing decreases in [100] dendrite growth region and dendrite trunk spacing increases in [010] dendrite growth region from the maximum weld pool width to the end due to crystallography-dependent growth kinetics. Moreover, strict control of low heat input (low laser power and high welding speed) beneficially promotes fine dendrite trunk spacing and reduces the size of dendrite growth regions. High heat input (high laser power and low welding speed) monotonically coarsens dendrite trunk spacing. The dendrite trunk spacing is refined and [100] dendrite growth is suppressed by the optimum low heat input and (001) and [100] welding configuration to improve weldability. An alternative mechanism of solidification cracking because of asymmetrical dendrite trunk growth is proposed. The useful results facilitate understanding of single-crystal superalloys microstructure development and solidification cracking phenomena. The theoretical predictions agree well with the experiment results. Moreover, the model is also applicable to other single-crystal superalloys with similar metallurgical properties by feasible laser welding or laser cladding.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3