Effects of Tensile Testing Temperature on Mechanical Properties and Deformation Behavior in Medium Mn Steels

Author:

Kawasaki Yoshiyasu,Toji Yuki,Takeshi Yokota,Funakawa Yoshimasa

Abstract

In single-phase austenitic steels, the optimum deformation temperature in the tensile test to obtain high tensile strength-elongation balance (TS×El) and work hardening rate (dσ/dε) depends on control of the stability of austenite. In order to clarify the effects of the deformation temperature in complex phase steels containing austenite, in this study, the effects of the tensile testing temperature on mechanical properties and deformation behavior were investigated in detail using steel A and steel B with a chemical composition of 0.15C-0.5Si-5.0Mn (wt%). Steels A and B consisted of ferrite and retained austenite, but contained different volume fractions of retained austenite, namely, 29 % and 17 % as a result of annealing at 660 °C and 620 °C for 2 h, respectively. The stability of the retained austenite of steel B was higher than that of steel A. In steel A, TS×El and dσ/dε achieved their maximum values at 20 °C, decreased from 20 to 100 °C, and then remained almost unchanged at more than 150 °C. On the other hand, in steel B, TS×El and dσ/dε achieved their maximum values at -40 °C, decreased from -40 to 50 °C and remained almost unchanged at more than 100 °C. These results can be explained by the stability of retained austenite and the transformation rate from retained austenite to martensite. It should be noted that control of the stability of retained austenite and the transformation rate from retained austenite to martensite led to an adjustment of the optimum deformation temperature to achieve the high TS×El and dσ/dε in medium Mn steels, in the same manner as in single-phase austenitic steels.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference6 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3