Orthotropic Behaviour of Magnesium AZ31 Sheet during Strain Localization

Author:

Henseler Thorsten1,Ullmann Madlen1,Prahl Ulrich2

Affiliation:

1. Technical University Bergakademie Freiberg

2. Technische Universität Bergakademie Freiberg

Abstract

It is known that metallic materials are characterized by anisotropy of their mechanical properties, with this being attributed to the conditions during the manufacturing process. For sheet metals, this anisotropy occurs symmetrically to the three orthogonal axes of the rolling, transverse and normal direction. This characteristic is referred to as orthotropic behaviour and manifests itself, for example, in earing during cupping tests. Therefore, orthotropic yield criteria are highly relevant for the numerical simulation of sheet metal forming processes. The Lankford coefficient, also known as the r-value, is a good experimental measure for characterizing orthotropic ductile behaviour of sheets, and can easily aid in parameter identification for yield criteria such as the Hill approaches. In the present investigations, Lankford coefficients were determined as a function of local strain in uniaxial tensile tests through high-resolution digital image correlation. The sample direction was varied between 0°, 45° and 90° to the rolling direction and the test temperature varied from RT to 350 °C at three different strain rates (0.01-1 s-1). By means of a novel backward analysis, the measuring range for the Lankford coefficients was positioned exactly in the necking area. An increase in temperatures showed a decrease in the initial Lankford coefficient. The results showed non-constant Lankford coefficients and commence the course of a natural exponential function depending on the local strain. Regardless of strain rate, the results revealed that the Lankford coefficients (r-values) at 150 °C, 250 °C and 350 °C approaches a steady-state of r = 1.14 with strains greater than 50 %.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3