The Biomechanics of the Fibrocystic Breasts at Finite Compressive Deformation

Author:

Akano Tochukwu Akano1,Fakinlede Omotayo Abayomi1,Nwoye Ephraim1

Affiliation:

1. University of Lagos

Abstract

The deformation of the human breast, especially that of the female, under variable pressure conditions, has been a recent focus for researchers, both in the computational biomechanics, computational biology and the health sector. When the deformation of the breast is large, it hampers suitable cyst tracing as a mammographic biopsy precontrive data. Finite element methods (FEM) has been instrumental in the currently studied practices to trail nodules dislocation. However, the effect of breast material constitution, especially that of a fibrocystic composition, on the biomechanical response of these nodules has gained less attention. The present study is aimed at developing a finite element fibrocystic breast model within the frame of biosolid mechanics and material hyperelasticity to model the breast deformation at finite strain. The geometry of a healthy stress‐free breast is modelled from a magnetic resonance image (MRI) using tissues deformations measurements and solid modelling technology. Results show that the incompressible Neo-Hookean and Mooney-Rivlin constitutive models can approximate large deformation of a stressed breast. In addition to the areola (i.e. nipple base), the surrounding area of the cyst together with its interface with the breast tissue is the maximum stressed region when the breast is subjected to compressive pressure. This effect can lead to an internal tear of the breast that could degenerate to malignant tissue.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3