Torque Analysis of IPMC Actuated Fin of a Micro Fish like Device Using Two-Way Fluid Structure Interaction Approach

Author:

Haq Mazhar Ul1,Gang Zhao1,Sun Zhuang Zhi1,Aftab S.M.1

Affiliation:

1. Harbin Engineering University

Abstract

In this paper, a numerical simulation of three dimensional model of IPMC actuated fin of a fish like micro device is presented using two-way fluid structure interaction approach. The device is towed by the surface vessel through a tow cable. Fin is acting as dorsal fin of the fish to control depth of the device and also acts as a stabiliser against its roll motion. Fin's displacement disturbs water flow streamlines around it, as a result velocity and pressure profile of fluid's domain changes around the actuated fin. As fin's position continuously changes throughout its actuation cycle, this makes it transient structural problem coupled with a fluid domain. Fin's displacement is received by the fluid and resulting fluid forces are received by the fin making it a two-way fluid structure interaction (FSI) problem. Such problems are solved by multi field numerical simulation approach. This multifield numerical simulation is performed in ANSYS WORKBENCH by coupling transient structural and Fluid Flow (CFX) analysis systems. It is desirous to determine the torque acting on the fin due to fluid forces through its actuation cycle by IPMC actuators. The objective of this study is to develop the methodology (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the IPMC actuated fin, subjected to large displacement against different flow speeds. Efficacy of fin as depressor and riser is also required to be judged by monitoring the forces acting on wing in response to its displacement under IPMC actuation. Same approach is also applicable to the self-propelled systems.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3