A Novel Nucleus Detection on Pap Smear Image Using Mathematical Morphology Approach

Author:

Nahrawi Nadzirah1,Mustafa Wan Azani2,Kanafiah Siti Nurul Aqmariah Mohd1,Ahmad Wan Khairunizam Wan1,Rohani Mohamad Nur Khairul Hafizi1,Rahim Hasliza A2

Affiliation:

1. Univerisiti Malaysia Perlis (UniMAP)

2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence (ACE)

Abstract

The fourth most common form of cancer among women is cervical cancer with 569,847new cases and 311,365 reported deaths worldwide in 2018. Cervical cancer is classified as the third leading cause of cancer among women in Malaysia, with approximately 1,682 new cervical cases and about 944 deaths occurred in 2018. Cervical cancer can be detected early by cervical cancer screening. Papanicolaou test, also known as Pap smear test is conducted to detect cancer or precancer in the cervix. The disadvantage of this conventional method is that the sample of microscopic images will risk blurring effects, noise, shadow, lighting and artefact problems. The diagnostic microscopic observation performed by a microbiologist is normally time-consuming and may produce inaccurate results even by experienced hands. Thus, correct diagnosis information is essential to assist physicians to analyze the condition of the patients. In this study, an automatedsegmentation system is proposed to be used as it is more accurate and faster compared to the conventional technique. Using the proposed method in this paper, the image was enhanced by applying a median filter and Partial Contrast Stretching. A segmentation method based on mathematical morphology was performed to segment the nucleus in the Pap smear images. Image Quality Assessment (IQA) which measures the accuracy, sensitivity and specificity were used to prove the effectiveness of the proposed method. The results of the numerical simulation indicate that the proposed method shows a higher percentage of accuracy and specificity with 93.66% and 95.54% respectively compared to Otsu, Niblack and Wolf methods. As a conclusion, the percentage of sensitivity is slightly lower, with 89.20% compared to Otsu and Wolf methods. The results presented here may facilitate improvements in the detection performance in comparison to the existing methods.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3