Development of Self-Assembled Biomimetic Boc-Protected Peptide-Polymer Based Nanovehicles for Targeted Delivery to Tumor Cells

Author:

Brown Alexandra M.1,Miranda-Alarćon Yoliem S.1,Knoll Grant A.1,Romanelli Steven M.1,Banerjee Ipsita A.1

Affiliation:

1. Fordham University

Abstract

Although effective, chemotherapeutic drugs often cause undesired side-effects. Thus, encapsulating chemotherapeutic drugs into nanoscale drug delivery vehicles (DDVs) has the potential to reduce side effects and promote targeted delivery. By mimicking ABA like block-co-polymer systems, we have developed a new amphiphilic biomimetic co-polymer Boc-Ile-PEG-Ile-Boc which was found to readily self-assemble into nanomicelles within hydrophilic shell structures. To facilitate targeting tumor cells, the nanoassemblies were bound to folate, leading to the formation of core shell like structures (IBP-F). Gold nanoparticles (AuNPs), were then embedded followed by functionalization with a second layer of folate. The final DDV system abbreviated (IBP-F-Au-F) formed a multi-layered nanostructure that was capable of efficiently encapsulating the anti-tumor drug tamoxifen. For comparison, we also examined the efficacy of the IBP-F assemblies as DDVs in the absence of AuNPs and a second folate layer. Release profiles showed an initial burst release, followed by sustained release. The DDVs were found to be biocompatible. Upon encapsulating the DDVs with tamoxifen, cell proliferation was inhibited over a period of 72 hours for both DDVs, while non-cancerous dermal fibroblasts continued to proliferate, thus indicating specific targeting ability of the DDVs. Confocal microscopy studies conducted in the presence of human breast cancer cells, MDA-MDB 231 revealed that the drug loaded assemblies were successfully internalized within the cells. SPR analysis demonstrate that IBP-F-Au-F had a higher affinity for breast cancer cells over non-cancerous keratinocyte cells. Thus, we have developed a new family of DDVs that selectively targets tumor cells.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-assembled phenylisoxazole-peptide hybrid assemblies and their interactions with breast and ovarian tumor cells;International Journal of Polymeric Materials and Polymeric Biomaterials;2018-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3