Affiliation:
1. University of Technology
2. University of Baghdad
3. King Saud University
Abstract
The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxidant pharmacophore-based structure-activity relationship analysis was assessed by the density functional theory as well as quantum chemical calculations. Moreover, the structural properties were utilized using Becke’s three-parameter hybrid exchange and Lee-Yang-Parr’s correction of functional approaches. Hesperidin-loaded gold nanoparticles were found to decrease hydrogen peroxide (H2O2) and thus induce Deoxyribonucleic acid (DNA) instability. In addition, hesperidin-gold nanoparticles were observed to display important antioxidant potential as well as ameliorate the functional activity of macrophages against Escherichia coli, possibly protecting DNA. These particles might be appropriate for clinical trials and could prove useful for the treatment of various life-threatening disorders.
Publisher
Trans Tech Publications, Ltd.
Reference3 articles.
1. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. TheScientificWorldJournal, 2013, 162750. https://doi.org/10.1155/2013/162750.
2. K. Mishra, Structure-activity relationship of anti-oxidative property of hesperidin, Int. j. pharm. Chem. 2 (2013) 40-53.
3. R. Al-Rikabi, H.S. Al-Shmgani, Y.H Dewir and S El-Hendawy, In Vivo and In Vitro Evaluation of the Protective Effects of Hesperidin in Lipopolysaccharide-Induced Inflammation and Cytotoxicity of Cell, Molecules 25 (2020) 478.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献