Computer-Assisted Diagnosis System for Abnormalities Classification in Digital Mammography Based on Multi-Threshold Modified Local Ternary Pattern (MtMLTP)

Author:

Gargouri Norhene1,Zouari Mouna1,Boukhris Randa1,Damak Alima1,Sellami Dorra1,Amous Sameh2

Affiliation:

1. National Engineering School of Sfax (ENIS)

2. Digital Radiology Center of Sfax (Drs Amous)

Abstract

The aim of this paper is to develop an efficient breast cancer Computer Aided Diagnosis (CAD) system allowing the analysis of different breast tissues in mammograms and performing textural classification (normal, mass or microcalcification). Although several feature extraction algorithms for breast tissues analysis have been used, the findings concerning tissue characterization show no consensus in the literature. Specifically, the challenge may be great for mass and microcalcification detection on dense breasts. The proposed system is based on the development of a new feature extraction approach, the latter is called Multi-threshold Modified Local Ternary Pattern (MtMLTP), it allows the discrimination between various tissues in mammographic images allowing significant improvements in breast cancer diagnosis. In this paper, we have used 1000 ROIs obtained from Digital Database for Screening Mammography (DDSM) database and 100 ROIs from a local Tunisian database named Tunisian Digital Database for Screening Mammography (TDDSM). The Artificial Neural Network (ANN) shows good performance in the classification of abnormalities since the Area Under the Curve (AUC) of the proposed system has been found to be 0.97 for the DDSM database and 0.99 for the TDDSM Database.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Artificial Neural Network for System Education Eye Disease Recognition Web-Based;Journal of Biomimetics, Biomaterials and Biomedical Engineering;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3