A Computational Investigation of Breast Tumour on Mammogram Based on Pattern of Grey Scale Distribution

Author:

Lim M.K.1,Khairunizam Wan1,Mustafa Wan Azani1

Affiliation:

1. Universiti Malaysia Perlis

Abstract

Breast cancer is the utmost female tumor and the primary cause of deaths among female. Computer-Aided Detection (CAD) systems are widely used as a tool to detect and classify the abnormalities found in the mammographic images. A detection of breast tumor in a mammogram has been a challenge due to the different intensity distribution which leads to the misdiagnosis of breast cancer. This research proposes a dectection system that is capable to detect the presence of mass tumor from a mammogram image. A total of 160 mammogram images are acquired from Mammographic Image Analysis Society (MIAS) databse, which are 80 normal and 80 abnormal images. The mammogram images are rescaled to 300 x 300 resolution. The noise in the mammogram is suppressed by using a Wiener filter. The images are enhanced by using Power Law (Gamma) Transformation, ɣ = 2 for a better image quality. The greyscale information that contain tumor mass is extracted and used to model the proposed detection system by using 80% or 128 and of the total 160 mammogram images. The rest 20% or 32 mammogram images are used to test the performance of the proposed detection system. The experimental results show that performance of the proposed detection system has 90.93% accuracy.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Breast Cancer Detection and Classification on Mammogram Images Using Morphological Approach;2022 5th International Conference on Engineering Technology and its Applications (IICETA);2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3