Affiliation:
1. Amirkabir University of Technology
2. Aja University of Dentistry
3. Materials & Energy Research Center (MERC)
Abstract
The dental tissue scaffold must provide a favorable surface for dental pulp stem cell attachment and proliferation. Employing nanohydroxyapatite (HA) and nanofluorohydroxyapatite (FHA) beside synthetic and organic polymer in favor of scaffolds would be used in bone and dental tissue engineering. In this research, nanoHA and FHA/chitosan scaffolds were synthesized by freeze-drying technique. Surface morphology, chemical composition and hydrophilicity have a great impact on initial cell attachment which will further affect the cell viability and proliferation which evaluated by SEM, XRD and contact angle measurement. Bioactivity of scaffolds was investigated by immersion in simulated body fluid (SBF) and cell proliferation assay. In freeze-drying technique percentage usage of hydroxyapatite could be risen up to 40% and shown better macro-mechanical and physical properties and bioactivity. According to obtained results by adding chitosan, contact angle was decreased by %54 and %37 for polycaprolactone (PCL)/HA and PCL/FHA scaffolds. In addition, addition of chitosan causes significant increase in the cell proliferation for PCL/HA and PCL/FHA up to 81% and 164%, respectively. These results indicate that PCL/FHA/chitosan scaffold represent a big potential for dental tissue engineering.
Publisher
Trans Tech Publications, Ltd.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献