The Identification of HSA-MIR-17-5P Existence in the Exosome of Adipose-Derived Stem Cells and Adipocytes

Author:

Murlistyarini Sinta1ORCID,Aninda Lulus Putri1,Afridafaz Ufida Aini1,Widyarti Sri2,Endharti Agustina Tri1,Sardjono Teguh Wahju1

Affiliation:

1. Universitas Brawijaya Malang

2. University of Brawijaya Malang

Abstract

MicroRNAs (miRNAs) have ability to down-regulate gene expressions. hsa-miR-17-5p, has been confirmed as an oncogene or tumor suppressor. However, the existence on human adipose-derived stem cells (ADSCs) or adipocytes, is still unclear. Many researchers emphasizing the role of hsa-miR-17-5p on cellular senescence, aging and cancer, but not specific on the expression in the exosome of human ADSCs and adipocytes. The primary ADSCs were derived from subcutaneous adipose tissue of pregnant woman during elective cesarean operation, then processed by combining conventional and enzymatic methods. Adipocytes were differentiated by using the StemPro Adipogenesis Differentiation kit® and Oil Red-O staining. Exosomes were isolated using Exosome Purification and RNA Isolation kit® and were characterized by scanning electron microscope. The markers, CD34 and CD44, were identified and analyzed by using FACS analysis. Subsequently, microRNA was extracted and observed for hsa-miR-17-5p expression. This study showed that ADSCs and adipocytes were proved to express CD34+ and CD44+. The hsa-miR-17-5p were also detected in both the exosome of ADSCs and adipocytes. Although the source of the ADSCs was from pregnant woman, the characteristic was similar with the ones from non-pregnant woman. Our study also supports the questionable existence of CD34 in ADSCs. Having confirmed the characteristics, we proved that the exosomes of ADSCs and adipocytes expressed similar hsa-miR-17-5p despite they are from phenotypically different cell types and may have distinct roles. However, further research steps should be done in the future to verify the role of hsa-miR-17-5p towards senescent cell and ADSC differentiation.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3