Characterization and Multi-Response Morphological Optimization for Preparation of Defect-Free Electrospun Nanofibers Using the Taguchi Method

Author:

Ramis Jopeth M.1,Pajarito Bryan B.2,Deocaris Custer C.3

Affiliation:

1. Technological Institute of the Philippines

2. University of the Philippines Diliman

3. De La Salle University

Abstract

The study presents a method on producing defect-free polyvinyl alcohol-gelatin (PVAG) nanofibers by considering multiple morphological characteristics of the produced nanofibers using the Taguchi method. Aside from minimizing the average fiber diameter, the method was also used to produce consistent, monodispersed PVAG nanofibers without the usual defects of beading and splattering. The experiments are performed considering the effect of polymer composition (PVAG ratio and solvent ratio of water, formic acid, and acetic acid H2O:FA:HAc) and process factors (tip-to-collector distance TCD and solution flow rate) on fiber morphology. Fiber morphology is measured in terms of 4 responses: average fiber diameter, standard deviation of fiber diameter, occurrence of beading, and occurrence of splattering. Results show that maximum overall desirability for electrospinning PVAG nanofibers at smallest average diameter and deviation (26.10 ± 9.88 nm) with chance of moderate beading and zero splattering is predicted at PVAG mass ratio of 6.5:3.5, H2O:FA:HAc solvent volume ratio of 4:4:2, TCD of 12.5 cm, and flow rate of 1 ml h-1. Results of confirmatory run agree with the predicted factor levels at maximum desirability, with average fiber diameter and standard deviation measured to be 26.95 ± 6.39 nm. PVAG nanofibers of the confirmatory run are also both bead-and splatter-free. Results suggest the application of Taguchi method can offer a robust and rapid approach in deriving the conditions for production of new and high-quality PVAG nanofibers for tissue engineering scaffolds.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3