Abstract
Liver biological scaffold was developed in order to resemble native liver tissue environment. It can be achieved by decellularizing native liver tissue that will remove cells and preserve extracellular matrix (ECM). Furthermore, ECM fibers are arranged in a special pattern, which affect liver cell polarity and topography that are important for cells’ implantation, proliferation and differentiation. Therefore, the aim of this study was to evaluate liver cube scaffold topography that was decellularized with fixed multiple sites syringe injection (Indonesia patent number: S00201907930).Rat liver cubes (n=3) underwent decellularization with Ethylene Glycol Tetraacetic Acid (EGTA) immersion and increased Sodium Dodecyl Sulfate (SDS) concentrations using previous multiple sites syringe injection protocol study. Deoxyribonucleic Acid (DNA) concentrations were measured to confirm less DNA materials remaining in scaffolds. Scanning Electron Microscope (SEM) analysis of scaffolds were conducted for topographic characterization compared to undecellularized liver control. Molecular analysis of DNA concentration showed complete removal of DNA material. SEM analysis gave appearance of intact liver cube scaffold microarchitecture. Liver cubes decellularization using multiple sites syringe injection showed good topographic liver scaffold characterization.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献