Synthesis and Characterization of Si Nanoparticles Obtained on Sonication of Porous Silicon Multilayer Films

Author:

Kale Paresh G.1,Pratibha Sharma1,Solanki Chetan S.1

Affiliation:

1. Indian Institute of Technology Bombay

Abstract

Synthesis of Si quantum dots (QDs), useful for multi-junction crystalline Si solar cells, using porous Silicon (PS) is presented in this paper. Four types of freestanding PS structures are fabricated by anodization method with modulation of current density between two levels. The level-1 current density is kept constant at 20 mA/cm2 (for reference monolayer structure - sample A) and 10 mA/cm2 (for all multilayer structures samples B, C, D). The level-2 is varied between 0 to 50 mA/cm2 (0, 20, 30, 50 mA/cm2 as sample A, B, C and D respectively). In order to obtain Si QDs from PS films, the films are subjected to sonication (120 W, 42 kHz) for 6 hours. HRTEM images confirm presence of Si nanoparticles in the range of 2 to 8 nm. Various spectroscopic analyses of Si nanoparticles are performed in order to evaluate quantum confinement behavior and surface modification observed during sonication. Analysis of de-convoluted Raman peaks shows frequency downshift and increase in full width half maximum due to formation of QDs. After sonication, PL spectroscopy indicates blue shift from 2.54 eV (sample A) to 2.85 eV (sample D_6HR), similar to the observations made by UV-Vis spectroscopy. FTIR spectra show oxidation of Si QDs during sonication. Spectroscopic and microscopic results are explained using quantum confinement and surface modification phenomenon.

Publisher

Trans Tech Publications, Ltd.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3