Photocatalytic Activity of ZnO Nanoparticles Prepared by a Microwave Method in Ethylene Glycol and Polyethylene Glycol Media: A Comparative Study

Author:

Sadr Manuchehri Qazale1,Assi Navid2,Pourmand Sanaz3,Darwish Maher4,Pakzad Amir2

Affiliation:

1. Islamic Azad University

2. Azad University

3. Amirkabir University of Technology (AUT)

4. Tehran University of Medical Sciences

Abstract

Zinc oxide nanoparticles have been synthesized by a sol-gel microwave assisted method using either ethylene glycol (ZnO-EG) or poly ethylene glycol ethanolic solution (ZnO-PEG) as dispersing media. The nanoparticles were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared. X-ray analysis revealed a hexagonal phase structure of both zinc oxides. The average crystallite size calculated from Scherrer equation was 27 nm and 53 nm in good agreement with 24 nm and 55 nm microscopic results for ZnO-EG and ZnO-PEG, respectively. The catalytic activity of the as-prepared nanoparticles was compared by the photodegradation of 2-nitrophenol under UVC. The effect of various parameters such as pH, catalyst weight, and pollutant concentration on the percent degradation was investigated. Best optimization was pH=7, 0.06g of nanoparticles weight, and 10 mg.L-1 pollutant concentration. Furthermore, pseudo first order kinetic based on Langmuir–Hinshelwood (L–H) model was proposed for degradation reactions and experimental data were in good agreement with this model.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3