Abstract
A promising rotating arc discharge method has been developed for producing high purity silver carbon nanotube and zinc oxide nanoparticles, to study their capacities for methylene blue (MB) dye removal under different conditions such as contact time, initial methylene blue dye ion concentration, solution pH, and adsorbent dose. The equilibrium isotherm data were analyzed using Langmuir, Freundlich, Temkin isotherms. Correlation coefficients indicated the following order to fit isotherms for silver carbon nanotube: Freundlich > Langmuir > Temkin. On the other hand, for zinc oxide nanoparticles, the following adjustment founded to fit isotherms was: Langmuir > Temkin> Freundlich. Furthermore, separation factors and distribution coefficients of Methylene blue (MB) dye were calculated. Adsorption kinetic data were analyzed using pseudo-first and second -orders and Elovich model. Film and intraparticle Diffusion model were used to investigate Adsorption mechanism. Kinetic studies showed that the adsorption of methylene blue onto silver carbon nanotubes followed Elovich kinetic model, and the rate of adsorption is controlled by the liquid film diffusion model. Adsorption of methylene blue on zinc oxide nanoparticles followed the pseudo-second-order kinetic model, and the rate of adsorption is controlled by the intraparticle diffusion model.
Publisher
Trans Tech Publications, Ltd.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献