Fatigue Crack Propagation Behavior of the Welded Steel of a Railway Bridge

Author:

Miranda Roberto M.C.1,Albuquerque Carlos1,Richter-Trummer Valentin1,de Figueiredo Miguel A.V.1,Calçada Rui1,de Castro Paulo M.S.T.1

Affiliation:

1. FEUP

Abstract

In the context of a R&D project concerning the new Alcácer do Sal composite railway bridge, a study of the fatigue crack growth on samples of its base material and weldments was performed. For this purpose, tests were carried out on CT specimens designed according to ASTM E647 standard, using the approximate thickness (B) of a structural detail of interest, B=32mm. The choice of B led to a relatively large specimen and was justified by the desire to better simulate service conditions, which would not be possible with smaller specimens, particularly in the case of weldments. The test matrix used included three values of R ratio (maximum/minimum load), 0.1, 0.4 and 0.7, and three material conditions, namely base material (BM), heat affected zone (HAZ) and weld metal (WM). When the nominal range of the stress intensity factor (DK) is used, the measured data displays a strong effect of the weldments on the FCG rates, with the base material presenting higher da/dN values. An evaluation of opening load behaviour was carried out, and it showed extensive closure caused by residual stresses in the HAZ and WM specimens. The investigation included the full field measurement of the residual stress perpendicular to the crack plane, using the contour technique. When the opening load effect was taken into consideration it was found that the da/dN vs. ∆K of the BM, HAZ and WM specimens is approximately identical. Furthermore if loading effects are considered, no significant difference is found for the three R values used, even if, as expected, higher R corresponds to higher da/dN values.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference9 articles.

1. European Standard EN 1993: Design of steel structures, Eurocode 3.

2. J M Barsom, S T Rolfe, Fracture and Fatigue Control in Structures, 3rd ed, (1999).

3. B. Kühn, M. Lukić, A. Nussbaumer, H. -P. Günther, R. Helmerich, S. Herion, M.H. Kolstein, S. Walbridge, B. Androic, O. Dijkstra, Ö. Bucak, EUR 23252 EN, ISSN 1018-5593, (2008).

4. ASTM E647, Standard test method for measurement of fatigue crack growth rates, (1995).

5. M Beghini, L Bertini, Fatigue crack propagation through residual stress fields with closure phenomena, Engineering Fracture Mechanics, vol. 36, (3), pp.379-387, (1990).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3