Affiliation:
1. Shanghai Jiao Tong University
2. University of Shanghai for Science and Technology
3. Henan University of Science and Technology
Abstract
Based on Cahn-Hilliard nonlinear diffusion equation, the phase field model has been established for ternary alloy spinodal decomposition, which directly couples with Calphad thermodynamics and dynamics calculation and takes into account the effect of the coherent elastic energy. The simulated microstructures of spinodal decomposition were carried out in the isothermally-aged of Cu-6at.%Ni-3at.%Si alloy. The results indicate that the spinodal decomposition takes place at the early stage of Cu-6at.%Ni-3at.%Si alloy aging at temperatures of 723K, forming two-phases mixture of Cu-rich and Ni/Si-rich, and the decomposition microstructures are distributed in a semi-interconnected labyrinth-like form. Under the effect of the coherent elastic energy, the decomposition microstructures demonstrate the obvious anisotropic characteristics, and present interconnected rectangular stripes aligned along [10] and [01] directions. The growth of the decomposition microstructures is in accordance with the growth law of growth exponentn≈0.29, slightly less than the LSW’s prediction.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献