Evaluation of Cutting Tools Secondary Adhesion Wear Using 3D Optical Topography Techniques — Application to Dry Turning of Al-Cu Aerospace Alloy

Author:

García-Jurado Daniel1,Mainé José Manuel1,Batista Moisés1,Vázquez-Martínez Juan Manuel1,Puerta Francisco Javier1,Marcos Marinao1

Affiliation:

1. University of Cadiz

Abstract

The combination of specific properties, cost, reliability and predictable behavior, guarantee that the aluminium alloys will be kept as one of the materials used in aerospace industry. When aluminium alloys are machined, transfer of cutting material to cutting tool is related with the secondary or indirect adhesion wear mechanism, which can be presented in form of Built-Up Layer (BUL) and Built-Up Edge (BUE), located in two defined zones of the tool, cutting edge and rake face respectively. The material adhered involve tool properties, geometrical and physicochemical alterations which modify the initial cutting conditions, in accordance with currently concept of tool wear. Until now, a generalized lack is observed in methodologies to assessment the secondary adhesion wear in machining of aluminium alloys, mainly due to the difficulty found in characterizing and quantify thereof. In this paper, based in Focus-Variation Microscopy (FVM) techniques, a methodology is proposed through high-resolution optical 3D topography measurements obtained from WC-Co worn tools tested in the dry turning of UNS A92024-T3 alloy, in order to obtained information about effects and intensity of secondary adhesion wear.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3