Thoughts on Superplasticity in General and on its Role in Earth Deformation

Author:

Wheeler John1

Affiliation:

1. University of Liverpool

Abstract

The Earth deforms dominantly by solid-state creep. Diffusion creep is known to be important. It is less clear whether mechanisms in which grain boundary sliding is accompanied by other processes (dislocation activity), and/or are associated with stress exponents closer to 2 than to 1 are important. Since the mechanisms of superplasticity are themselves not fully resolved, we cannot say for sure whether the Earth deforms superplastically. Models for diffusion creep are relevant for the Earth and possibly for superplastic materials. Modelling shows that large strains may not necessarily obliterate initial textures because grain rotations, although they occur, slow down as microstructures evolve. Modelling also predicts major strength anisotropy induced by grain shape alignment. Models for two-phase diffusion creep can be constructed for when the second phase is inert (insoluble). If both phases are soluble and can participate in diffusion, the basic theory for single phase diffusion creep cannot be applied and new insight is required.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3