Effect of Grain Size and Structure, Solid Solution Elements, Precipitates and Twinning on Nanohardness of Mg-RE Alloys

Author:

Maier Petra1,Richter Asta2,Tober Gerhard1,Hort Norbert3

Affiliation:

1. University of Applied Sciences Stralsund

2. Technical University of Applied Sciences Wildau

3. Helmholtz-Zentrum Geesthacht

Abstract

In this study Mg10GdxNd alloys are investigated by nanoindentation hardness measurements in several material conditions. Mg10GdxNd alloys with an average coarse grain size of 500 µm were cast by permanent mold direct chill casting. Hardness values vary due to the inhomogeneous microstructure formed during the solidification process consisting of dendrite arms with preferred orientation direction. The effect of dissolving particles during solution heat treatment (T4) and isothermal ageing (T6) was observed to a different extent depending on Nd content. Isothermal ageing promotes a duplex microstructure of coarse β1phase precipitates and regions containing much finer precipitates. Post processing by direct extrusion changes the microstructure dramatically to an average grain size of 15 µm. The microstructure after hot extrusion shows segregation of precipitates in the extrusion direction. Near this alignment of second phases hardness and plastic deformation differ from precipitates enriched in RE elements due to depleted regions of solid solution around them. This phenomenon is known from alloying element segregation to grain boundaries. Depending on the amount and location of second phases in the as-cast microstructure and degree of cold work, recrystallization leads to an inhomogeneous microstructure, consisting of fine grains (15 µm) and very fine grains, where second phases act as nuclei during the recrystallization process. Furthermore, mechanical testing (fatigue) causes an increase in dislocation density by work hardening and extensive twinning near the fractured surface. Here the hardening effect interferes with grain size strengthening.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3