Behavior of the Nano Alumina Powder Conformed by Slip Casting under Microwave Sintering

Author:

Arellano A.1,Lemus-Ruiz J.1,Bouvard D.2,Olmos L.3

Affiliation:

1. Instituto de Investigaciones Metalurgicas

2. Institut Polytechnique de Grenoble

3. Universidad Michoacana de San Nicolás de Hidalgo

Abstract

The effect of the transformation of phase in nanopowders of transition alumina has showed to be detrimental for the final characteristics of the consolidated materials. It was found that the complete transformation from gamma (γ-Al2O3) to alpha (α-Al2O3) alumina generated larger grain sizes and lower relative densities. This work studies the effect of slip casting preformed on the transformation phase of alumina during microwave sintering of α-alumina nanopowders. The sintering of the samples was carried out in a typical unimodal microwave furnace with a 2.5 GHz frequency. Sintering was carried out under air atmosphere at temperatures vary between 1100 and 1500 °C with heating rate of 100 and 200 °C/min and with a sintering plateau of 5 minutes. Sample characterization was performed by XRD, SEM, and TEM. The phase quantification was calculated using the Rietveld software from the XRD patterns. To have a good heating control in the microwave system it is possible by using slip casting to preform compact. It was observed that the heating rate has a strong effect on the phase transformations. Secondary phases like θ, θ’(x, y) appeared in samples sintered with a heating rate of 200 °C/min no matter the sintering temperature. Meanwhile the complete alumina transformation was found when sample were heating at 100 °C/min.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3