Affiliation:
1. Dalian Jiaotong University
2. Dalian University of Technology
3. Henan Polytechnic University
Abstract
In this paper a numerical investigation on the void nucleation behaviors under combined mechanical and thermal cycling conditions have been performed. A finite element unit cell model is conduct to calculate the local stress-strain field and describe the process of void nucleation from inclusion. Numerical results show that the thermal mismatch stress between the particles and matrix can assist the external load to cause interface debonding. Under certain mechanical and thermal cycling conditions, complicated stress and strain hystereses developed in the matrix. Both the plastic strain and plastic energy density of the interface will be accumulated during every thermal cycle. The plastic energy accumulation of the interface will first reach the debonding value and failure occurs. Based on the numerical calculation, a new energy based failure criteria is proposed to characterize the behaviors of void nucleation under combine mechanical and thermal cycling conditions.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献