Abstract
Elimination of porosity and refinement of the normally coarse cast microstructure ofaluminium cast alloys by the intensive plastic deformation during friction stir processing (FSP) iswell known. However less is known about the mechanical behavior of the FS processed regionwhich contains zone/pass boundaries and macro/microstructure segregations. In the present study ofFS processed cast Al-7Si-0.3Mg alloy, microstructures featuring the deformed α-Al, fragmented Siparticles and their distribution in the processed region were related to the fracture paths duringtensile testing. It has been found that under the condition of a high rotation speed and minimum pinoverlap there is a strong upward flow of deformed cast material in thermomechanial affected zone.The arrays of Si particles in that flow have provided favorable paths for crack propagation duringtensile testing. As a result, tensile elongation and thus UTS values are low. The mechanism of thatupward flow and FSP conditions for reducing the flow and thus for improving properties of theprocessed region are discussed.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献