Abstract
Effects of high-speed deformation on age hardening and microstructural evolution behavior of 6061 aluminum alloys were studied. By affecting the high-speed impact compression (about 5 GPa) to the 6061 aluminum alloy plate in the state of quenching after the solution heat treatment, the maximum hardness became twice as high as the original hardness. Even after the impact compression, age-hardening was clearly identified both at 175 °C and 100 °C. TEM observation revealed that point defect clusters were distributed densely inside grains after the impact compression, possibly due to the effect of high-speed deformation. The point defect clusters observed were assumed to be stacking fault tetrahedra on the basis of high resolution TEM analysis. The point defect clusters and precipitates were both visible even after the peak-aged condition at 175 °C. The 6061 aluminum alloy specimen after the solution heat treatment, followed by the impact compression (8.0 GPa) and the peak-aged condition showed the highest hardness value (154 Hv) among the testing conditions selected in the present study.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献