Morphological Control of Porous Structure in Al-Ti Intermetallics Foam Manufactured by Reactive Precursor Process

Author:

Kobashi Makoto1,Kanetake Naoyuki1

Affiliation:

1. Nagoya University

Abstract

In this paper, a novel processing method (reactive precursor method) to manufacture high-melting point porous Al-Ti intermetallics is investigated. Especially, morphological control of porous structure is focused. In the reactive precursor process, precursors are made by blending aluminum and titanium powders. The precursor is heated to ignite an exothermic reaction (so called “combustion reaction”) between the elemental powders. Pore formation is a well-known intrinsic feature of the combustion reaction, and we tried to control the pore morphology. Fundamentally, the closed-cell structure can be obtained when the maximum temperature during the reaction exceeds the melting point of the reaction product. By blending the exothermic agent powder in the precursor, the maximum temperature is increased and the reaction products are melted. The porosity is controlled by the maximum temperature. In contrast, an open-cell porous structure can be obtained when the maximum temperature is below the melting point of the reaction product. Microwave heating turned out to be an effective method to create an open cell structure. A powdery substance that does not react with other elemental powders (heat-absorbing agent powder) decreases the temperature during the reaction. Closed, open and bimodal-sized open pores have been achieved by the reactive precursor process so far.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3