In Situ Investigation of Grain Migration by TGZM during Solidification in a Temperature Gradient

Author:

Reinhart Guillaume1,Nguyen-Thi Henri1,Sarpi Brice1,Bogno Aboul Aziz2,Billia Bernard1

Affiliation:

1. Aix- Marseille University

2. Alberta university

Abstract

Temperature Gradient Zone Melting (TGZM) occurs when a liquidsolid zone is submitted to a temperature gradient and leads to the migration of liquid droplets or channels through the solid, up the temperature gradient. TGZM has a major influence on the preparation of the initial solid-liquid interface during the stabilization phase following the directional melting of an alloy and is at the origin of the diffusion of solute towards the top part of the mushy zone. TGZM is also causing the migration up the temperature gradient of dendrite secondary arms during directional solidification, which can have a significant impact on the micro-segregation pattern of the final microstructure. In this communication we report on a directional solidification experiment carried out at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France) on Al4.0 wt.% Cu alloy to study the dynamics induced by the TGZM phenomenon on an equiaxed grain that nucleated in front of a columnar structure. Based onin situexperimental observations obtained by synchrotron X-ray radiography, the dissolution of the bottom part of the equiaxed grain is characterized and measurements are compared with predictions of the TGZM theory in diffusive regime.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference15 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3