Scoring Analysis of Design, Verification and Optimization of High Intensity Positron Source (HIPOS)

Author:

Zeman Andrej1,Tuček K.1,Daquino G.1,Debarberis L.1,Hogenbirk A.2

Affiliation:

1. Institute for Energy

2. Nuclear Research and Consultancy Group (NRG)

Abstract

As part of an exploratory research project at the Institute for Energy (Joint Research Centre of the European Commission), a feasibility assessment was performed for the design and construction of a high-intensity positron facility (HIPOS) in a neutron beam tube, HB9, at the High Flux Reactor (HFR) in Petten. The full model of reactor core, reflector and reactor instrumentation at the neutron beam line HB9 were modeled and full neutronic and photonic calculations were carried out by MCNP4C3. The source file was generated in two formats: SDEF and WESSA. Consequently, two different codes were used for scoring analysis for the optimization of the concept and geometry of positron generator. The main concept including key design parameters have been evaluated independently by two computer codes, in particular MCNP-X and GEANT4. The parametric design analysis including the optimization of positron generator at the pre-selected neutron beam line is reported in this paper. The detailed assessment of the critical design parameters, specifically from technological point of view is summarised. The results of independent analysis confirmed that the best approach is to combine two concepts of positron generation, which are based on the exploiting of neutron and gamma radiation. The results verified that the proposed concept can reach the defined threshold of the positron yield and the positron beam can reach an intensity of 1013e+/sec (un-moderated). The details of completed work are reported in this paper.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3