Affiliation:
1. Universidade de Brasìlia
2. Universidade do Cauca
3. Universidade de Brasília (UNB)
Abstract
The zirconia in its cubic phase (C-ZrO2) has gained scientific and technological interest because it has high ionic conductivity and is useful in applications where the transport of oxygen ions prevails, for example, in the oxygen sensors and solid oxide fuel cells [1,. In the pure zirconia, the Zr4+ ion is too small to sustain the fluorite structure at low temperatures, so it has to be partially replaced by a higher atomic radius cation and lower valence number, for example, the Y3 +, Mg2 +, Ca2 + and the rare earth cations TR3 +, [. Currently there are several synthesis methods used to obtain cubic zirconia, the most popular being the mixture of oxides and coprecipitation used industrially in the research labs, but these methods provide powders with different characteristics which will be decisive for a specific application. In this context, the objective of this study was the preparation of homogeneous mixtures of zirconia-rare earth in different concentrations in order to stabilize the C-ZrO2, using the technique of heterogeneous coprecipitation for potential applications in oxygen sensors.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献