Antibacterial and Antifungal Glass with High Biocide Performance: Increased Antimicrobial Efficiency by Acid Activation

Author:

Mendes Elton1,Oliveira C.M.2,Tachinski C.G.2,Fernandes M.P.2,Piletti Raquel2,Riella Humberto Gracher3,Fiori Márcio A.2

Affiliation:

1. Federal University of Campina Grande

2. Universidade do Extremo Sul Catarinense – UNESC

3. Federal University of Santa Catarina

Abstract

A compound contending silver ion specimens presents biocidal properties with effect proportional to ion concentration. An efficient biocidal material can be developed by incorporating silver ions species in glasses by ionic exchange process. The reactive area and material porosity are factors that influence the ion exchange reaction efficiency. Previous studies show that the acid activation of glasses increases the absorption capacity and can also increase the exchange capacity. This paper presents preliminary results on the biocide potencial optimization of the biocide powder glass. This process was performed using hydrochloric acid. Different pH (1.00, 3.00 and 5.00), treatment time (2.0, 4.0 and 6.0 hours) and temperature (30.0, 60.0 and 90.0°C) were used in the samples development. Microbiological analysis of the samples was made by disk diffusion method in the bacteria species Echerichia coli and Staphylococcus aureus. Samples were still submitted to EDS and Atomic Absorption.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3