Influence of Rhombohedral Graphite Phase on the Diamond Nucleation

Author:

Almeida Luciana Lezira Pereira1,Skury Ana Lúcia Diegues2,Monteiro Sérgio Neves2,Bobrovinitchii Guerold Sergueevitch3

Affiliation:

1. Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

2. State University of North Fluminense - UENF

3. Universidade Estadual do Norte Fluminense

Abstract

The high pressure and temperature, synthesis of diamond from carbonaceous materials, is a complex process highly dependent on variables such as the catalyst/solvent, the crystalline structure of the precursor material, the processing conditions and the type of compressive chamber. The optimum susceptible precursors to be transformed into diamond are those possessing the perfect hexagonal graphite structure, which is the thermodynamically most stable form of carbon at atmospheric pressure and ambient temperature. However, the majority of both industrial and natural graphites, presents a mixture of different atomic structural arrangements that greatly influence the process of diamond synthesis. In this works the influence of rhombohedral and hexagonal phases existing in the graphite was performed by means of a software refinement of the crystal structures using the Rietveld method. The thermobaric treatment, which determine the structural parameters, was conducted in a high pressure anvil type device with a central concavity. All experiments were carried out at 1200°C and pressures varying from 4.3 to 5.0 GPa. It was determined that the degree of graphite to diamond transformation is directly associated with the content of rhombohedral phase.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3