Performance Evaluation of a Silicide-Based Thermoelectric Generator for Power Generation

Author:

Zhou Ai Jun1,Feng Li Dong1,Liu Wei1,Dai Xin Yi1,Cui Heng Guan1,Zhao Xin Bing2,Li Jing Ze1

Affiliation:

1. University of Electronic Science and Technology of China

2. Zhejiang University

Abstract

A TEG composed of p-type higher manganese silicide and n-type magnesium silicide-stannide was evaluated by theoretical simulation based on finite element method and steady-state approximation. The geometry factors, heat flux, power output and the thermal electrical conversion efficiency of the TEG were calculated by applying the measured thermoelectric parameters of each leg into the simulation tool. Furthermore, the contact effect on the performance of the TEG was analyzed by separately introducing a contact layer between the thermoelectric legs and the metal layers having specific electrical and thermal conductivity. It was found that the different cross-sectional areas were required for the p-and n-type legs to achieve maximum module output or conversion efficiency. In ideal contact state, a promising efficiency of 8.29% can be obtained at a given temperature gradient. On the other hand, the performance of the TEG might be seriously deteriorated if the electrical or/and thermal resistance of the contact layer increased.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3