Nanostructured Superhydrophobic Silver Surfaces

Author:

Sarkar Dilip K.1

Affiliation:

1. Université du Québec à Chicoutimi

Abstract

Inspired by “lotus-effect”, a superhydrophobic surface, in general, is prepared via two steps: (i) creating a surface roughness and then (ii) lowering the surface energy via a self-assembly of organic molecules or via low surface energy coatings. Superhydrophobicity cannot result if one of these two essential factors does not coexist. In the present work, it has been shown that superhydrophobic properties can be achieved on silver surfaces both via two-steps and a novel and simple one-step process. In the two step-processes a fractal-structured silver film deposited on copper surface by galvanic exchange reactions was passivated using stearic acid organic molecules to reduce the surface energy resulting in the superhydrophobicity. In the one-step process, however, the copper substrates were simply immersed in the silver nitrate solution containing fluoroalkylsilane (FAS-17) molecules resulting in superhydrophobicity. The silver films prepared both via two-steps and one-step processes were found to be highly water repellant with the water drops rolling off those surfaces. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were utilized to understand the morphology, molecular bonding, and chemical properties of the superhydrophobic silver surfaces.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3