Abstract
Al based intermetallic materials are commonly susceptible to hydrogen embrittlement reaction. Water vapor in the air reacts with the aluminum in the alloy and releasing hydrogen. Thus, the aid of this work is to know how much hydrogen can be released when the embrittlement reaction is induced inside the milling container. For this purpose the CuAl2intermetallic material was made by conventional castings methods and then subjected to high-energy ball milling in water. The samples were characterized by X-ray diffraction pattern, attenuated total reflectance spectroscopy and scanning electron microscopy (SEM). After the milling process, the amount of hydrogen released was correlated with the other reaction products obtained during the reaction. These products were primarily aluminum hydroxides. The amount of hydrogen that can be released is similar to the theoretical amount possible that can be released.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synthesis of nanomaterials using top-down methods;Advanced Nanomaterials and Their Applications in Renewable Energy;2022
2. Overviews of Synthesis of Nanomaterials;Advanced Nanomaterials and their Applications in Renewable Energy;2015