Evaluation of the Energetic Valorization Potential of Polymeric and Textile Industrial Wastes

Author:

Sousa Célia1,Castro Fernando1,Vilarinho Cândida1,Soares Delfim2

Affiliation:

1. Minho University

2. University of Minho

Abstract

Among the solid wastes produced by textile industry, there is a significant amount of wastes with energetic value and which are usually sent to controlled landfills, without any recovery. This traditional route corresponds to high economical and environmental costs, since wastes can be used as a source of energy and/or materials. With the recycling route strongly restricted due to the presence of mixtures of different types of polymeric compounds, some of them not biodegradable, the study of the feasibility of energy recovery from such wastes is of upmost importance and the aim of the present work. Most of the wastes are valuable resources that can be used as raw materials or as an energy source to produce heat or electricity. In this work the potentiality of energy recovery from solid wastes of some of the Vale do Ave textile units was investigated. For that purpose, wastes have been characterized for their weight loss at 105°C, calorific value and ashes content (after burning out at 850°C). The chemical composition of the ashes was determined by X-Ray fluorescence spectrometry. DSC-TGA tests were performed in two different atmospheres, air and argon, in order to evaluate the thermal behavior of the studied wastes. The characterized wastes showed calorific values not negligible, varying from 3500 to10400 kcal/kg (at dry base), similar to the results obtained by others authors and comparable to solid materials which are traditionally considered as fuels (sugar cane, lignite, etc). A weight loss at (105°C) lower than 6.5% and a maximum ashes content of 15% was achieved. However, some ashes present high contents of heavy metals, which can drives to environmental concerns. By the analysis of the thermal profiles it was found that wastes decomposition takes place at low temperatures (< 600°C) resulting in a small amount of the final solid fraction. Concerning the obtained results, the solid wastes collected from different textile units show high potential for energy recovery.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3