Improvement in Oxidation Resistance of Ni3Al Based Single Crystal Superalloy IC32 by NiAlHfSi Coating

Author:

Dai Peng Chao1,Peng Hui1,Pei Yan Ling1,Ma Yue1,Li Shu Suo1,Gong Sheng Kai1

Affiliation:

1. Beihang University

Abstract

In order to improve the oxidation performance of IC32, the NiAlHfSi coating was deposited on the alloy by electron beam physical vapor deposition (EB-PVD) method. The oxidation resistance of the coated alloy at 1423 K was investigated. The microstructures of the samples before and after oxidation were examined by SEM, XRD and EPMA. It was found that the oxide scales compactly formed on the surface of the coating, and the oxidation mainly consisted of Al2O3 and NiAl2O4. Phase transformation occurred from β-NiAl to γ-Ni3Al in the coating after oxidation for extend periods. The diffusion and oxidation of Mo were prevented effectively by the coating, which improved the oxidation performance of IC32 significantly.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3