Improving Beamtime Efficiency for Residual Stress Neutron Experiments

Author:

Boin Mirko1,Wimpory Robert Charles1,Randau Christian2

Affiliation:

1. Helmholtz Centre Berlin for Materials and Energy

2. eorg-August Universität Göttingen

Abstract

Starting during the shut-down of the HZB research reactor BER-II in 2011/2012 the E3 residual stress and texture diffractometer in Berlin underwent a comprehensive upgrade. The investments were broken down into different criteria, such as enhancing the instrument performance and accuracy as well as extending the range of applications for the user community. Here, we report about the gains achieved after integrating and commissioning the individual hardware and software tools included in the upgrade project, namely a motorized primary slit to accurately adjust the gauge volume, a secondary optics radial collimator and a laser scanner to precisely and quickly align the sample. The integration of the presented devices is further supported by software developments to shorten the instrument alignment procedure and measurement time. The upgrade has improved the efficiency of the available neutron beamtime.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A complete reassessment of standard residual stress uncertainty analyses using neutron diffraction emphasizing the influence of grain size;International Journal of Pressure Vessels and Piping;2018-07

2. Quantification of residual stresses in electron beam welded fracture mechanics specimens;International Journal of Solids and Structures;2017-02

3. Optimization of counting time using count statistics on a diffraction beamline;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3