Affiliation:
1. South China University of Technology
Abstract
Strain-rate sensitivities of 55-65vol.% aluminum 2024-T6/TiB2composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar. Results showed that 55-65vol.% aluminum 2024-T6/TiB2composites exhibited significant strain-rate sensitivities, which were three times higher than that of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with reinforcement content increasing (up to 60%), which agreed with the previous researches. The aluminum 2024-T6/TiB2composites showed hybrid fracture characteristics including particle cracking and aluminum alloy softening under dynamic loading. The flow stresses predicted by Johnson-Cook model increased slowly when the reinforcement volume fraction ranged in 10%-40%. While the reinforcement volume fraction was over 40%, the flow stresses of aluminum matrix composites increased obviously and the strains dropped sharply. Keywords: Composite materials; Dynamic compression; Stress-strain relationship
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献