Deformation Behavior of ZK60 Magnesium Alloy at Elevated Temperature

Author:

Wang Chun Yan1,Qi Hai Qun1,Wu Kun1,Zheng Ming Yi1

Affiliation:

1. Harbin Institute of Technology

Abstract

The high temperature compressive tests of squeeze casting ZK60 magnesium alloy in the testing temperature range of 523-723K and strain rate range of 0.001-10s-1 were performed on Gleeble-1500D thermal simulator testing machine. Optical microscopy was performed to elaborate on the dynamic recrystallization (DRX) grain growth. TEM observation indicated that the mechanical twinning, dislocation slip, and dynamic recrystallization are the materials typical deformation features. Variations of flow behavior with deformation temperature as well as strain rate were analyzed. Analysis of the flowing deformation behavior and microstructure observations indicated that the flow localization was observed at lower testing temperature and higher strain rates. Dynamic recrystallization occurred at higher testing temperature and moderate strain rates, which improved the ductility of the material. The results indicated that at the testing temperatures lower than 573K and strain rates higher than 1s-1, the material exhibited flow instability manifesting as bands of flow localizations. These temperatures and strain rates should be avoided in processing the material. Dynamic recrystallization occurs in the temperature range 573-723K and the strain rate range 0.001-0.1s-1. The number of dynamic recrystallization grains is less at lower temperature and higher strain rate than higher temperature and lower strain rate. The dynamic recrystallization is inadequate at 573-623K while the dynamic recrystallization grain growth has been observed in the temperature range of 673-723K. Therefore it may be considered that the optimum processing parameters for hot working of squeeze casting ZK60 magnesium alloy are 648K and 0.001-0.01s-1, at which fine dynamic recrystallization microstructure can be obtained.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3