Plasma Sintering of the Steel Reinforced with Nanostructured Carbides

Author:

Silva Ariadne de Souza1,de Almeida Edalmy Oliveira1,Gomes Uilame Umbelino2,Silva José F.1,de Medeiros Indira Aritana Fernandes2

Affiliation:

1. Federal University of Rio Grande do Norte

2. Universidade Federal do Rio Grande do Norte

Abstract

Particle reinforced metal matrix composites have received considerable interest over many years and continue still under constant development to gain wider industrial applications. New technique of production of carbetos of refractory metals (WC, NbC, TaC, TaxNby) has been developed, synthesizing nanostructured carbides that show improvement of diverse properties of the materials to the gotten ones for the conventional processes. The properties of sintered composites are determined not only by the nature and quality of the raw materials employed but also by microstructure and porosity resulting from the processing techniques e sintering method. In this study, additions of 20 wt% NbC nanoparticles or micro-particles in the ferrite matrix were performed with the aim of improving the mechanical and use properties. Ancorsteel Fe 1000B powder from Hoengans Corp. was used together with the graphite, and a small amount of Fe3P, to induce liquid phase sintering. NbC nanoparticles or micro-particles were inserted into the Fe 1000B matrix by wet grinding (acetone) in a mill of planetary type of high energy. The angular velocity of the mill was kept constant at 300 rpm with milling time of 10 hours. The composites powders milled were annealed at 900 ° C for 1 hour under flowing hydrogen e argon, and a priori were pressed into cylindrical pellets under 600 MPa and sintered the plasma. Finally, the sintered pellets were evaluated through the testing: SEM, microhardness and density. It was noticeable the behavior of the composites Fe 1000B - NbC was affected by the content of nanoparticles of NbC added as well as by processing parameters, particularly plasma sintering.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3