Synchrotron Diffraction Studies on the Transformation Strain in a High Strength Quenched and Tempered Structural Steel

Author:

Dutta R.K.1,Huizenga R.M.2,Amirthalingam M.2,Gao H.1,King A.3,Hermans M.J.M.2,Richardson I.M.2

Affiliation:

1. Materials Innovation Institute (M2i)

2. Delft University of Technology

3. ESRF European Synchrotron Radiation Facility

Abstract

In-situ phase transformation behaviour of a high strength (830 MPa yield stress) quenched and tempered S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. %)) structural steel, during continuous cooling under different mechanical loading conditions to promote the bainitic transformation, was studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the transformation strains. The temperature dependent elastic constants of ferrite in the steel were also determined using \textit{in-situ} tensile tests at different temperatures in a synchrotron X-ray diffractometer. The transformation strains were calculated under different loading conditions.The elastic constants were calculated from the lattice parameters at 25 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C. The elastic constants varied from 202 GPa at 25 °C to 143 GPa at 600 °C. The variation in lattice plane strains during phase transformation under small external loads were calculated. Bulk measurement techniques such as dilatation experiments give the averaged transformation strains. However, in-situ synchrotron measurements performed in this work describe the transformation strains of the individual transforming phases and the strains arising due to possible variant selection.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3