Affiliation:
1. Materials Innovation Institute (M2i)
2. Delft University of Technology
3. ESRF European Synchrotron Radiation Facility
Abstract
In-situ phase transformation behaviour of a high strength (830 MPa yield stress) quenched and tempered S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. %)) structural steel, during continuous cooling under different mechanical loading conditions to promote the bainitic transformation, was studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the transformation strains. The temperature dependent elastic constants of ferrite in the steel were also determined using \textit{in-situ} tensile tests at different temperatures in a synchrotron X-ray diffractometer. The transformation strains were calculated under different loading conditions.The elastic constants were calculated from the lattice parameters at 25 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C. The elastic constants varied from 202 GPa at 25 °C to 143 GPa at 600 °C. The variation in lattice plane strains during phase transformation under small external loads were calculated. Bulk measurement techniques such as dilatation experiments give the averaged transformation strains. However, in-situ synchrotron measurements performed in this work describe the transformation strains of the individual transforming phases and the strains arising due to possible variant selection.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science