Near-Net Shaping of Silicon for Optical Lens by One-Shot Pressing at Temperature just below Silicon Melting Point and Improvement of Infrared Transmittance by Primary Recrystallization

Author:

Morishita Kohei1,Nakajima Kazuo1,Fujii Takashi2,Shiinoki Masakazu3

Affiliation:

1. Kyoto University

2. Murata Manufacturing Company Limited

3. OMRON Corporation

Abstract

Silicon is brittle and easily cracks even under a small load. The difficulty in shaping silicon has prevented breakthroughs in the mass production of silicon lenses for terahertz and infrared technology. We developed a novel method of deforming bulk single-crystal silicon into the required shape by one-shot pressing at a temperature just below the melting point of silicon, despite its brittleness and covalent nature, and realized the near-net shaping of the material into the plano-convex shape with the curvature radius R=7.5 mm for a infrared transmission lens. The crystallographic quality of the obtained lens could be improved by primary recrystallization. The simple method of 'pressing' will enable the mass production of not only silicon lenses but also lenses with a complex shape, such as aspherical lenses, and lens arrays by using dies with desired shape.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3