Abstract
The peritectic alloys, such as some types of steel, Ni-Al, Fe-Ni, Ti-Al, Cu-Sn, are commercially important. In contrast to other types of alloys, many unique structures (e.g. banded or island ones) can form when peritectic alloys are directionally solidified under various solidification conditions. It can be observed in the course of the directional solidification experiments performed in a rotating magnetic field (RMF) that the melt flow has a significant effect on the solidified structure of Sn-Cd alloys. This effect was investigated experimentally for the case of Sn1.6 wt% Cd peritectic alloy. For this purpose, a Bridgman-type gradient furnace was equipped with an inductor, which generates a rotating magnetic field in order to induce a flow in the melt. As a result, the forced melt flow substantially changes the solidified cellular microstructure. The cell size and the volume fraction of the primary tin phase were measured by an image analyzer on the longitudinal polished sections along the entire length of the samples. The microstructure was investigated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS).
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献