Optic and Piezoelectric Coupling in the Sol-Gel PLZT Electroceramics

Author:

Kozielski Lucjan1,Plonska Malgorzata1

Affiliation:

1. University of Silesia

Abstract

PZT ceramic system with presence of La contents, have been proposed and prepared using sol gel sintering method for practical application of photostriction, which is the superposition of photovoltaic and piezoelectric effects. Such a ceramics produced by conventional mixing oxide method does not exhibit photostrictive properties due to the defects and inhomogeneous distribution of grains and pores. In this study, an investigated lanthanium(III) doped PZT ceramics were obtained by sol-gel technique from the organometallic precursors. It was found that fabricated material were effective in the enhancement of photovoltaic and photostrictive properties. Consequently, lanthanium influence deviation of piezoelectric parameters were studied as a function UV light illumination. For the determination lighting dependancy of the transformation parameters the resonant and antiresonant method was implemented. The improved Piezoelectric Transformer structure successfully changed gain characteristics proportionally to light intensity. The authors invention of a light driven output gain adjustment in Piezoelectric Transformers (PT) yields a novel “smart” multifunctional wireless device. This new created application area can be utilized in self-adopting shutters in photo cameras due to improved sensitivity to surrounding illumination conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3