Catalytic Effect of Nanoparticles on Primary and Secondary Phase Nucleation

Author:

de Cicco Michael P.1,Perepezko John H.1

Affiliation:

1. University of Wisconsin-Madison

Abstract

Nanoparticles were shown to catalyze nucleation of primary and secondary phases in metal matrix nanocomposites (MMNCs). This catalysis is important as it contributes to the mechanical property enhancement in the MMNCs. Primary aluminium grain refinement was demonstrated in A356 matrix nanocomposites. Various types and sizes of nanoparticles (SiC, TiC, γ-Al2O3; 10-96 nm) were used to make these MMNCs and in all cases the MMNCs had smaller, more equiaxed grains compared to the reference A356. Using the droplet emulsion technique, undercoolings were shown to be significantly reduced. Undercoolings in the MMNCs were in good general agreement with the undercooling necessary for free growth, suggesting the applicability of this model to nucleation on nanoscale catalysts. Secondary phase nucleation catalysis was demonstrated in a zinc alloy AC43A MMNC and a binary Mg-4Zn MMNC. In AC43A, secondary phase nucleation was catalyzed with the addition of various nanoparticles (TiC, SiC, γ-Al2O3). The secondary phase nucleation catalysis in AC43A coincided with ductility enhancement. In Mg-4Zn, SiC nanoparticle addition changed the secondary phases that formed. MgZn2 was formed in the MMNC at relatively high temperatures consuming the Zn and reducing the amount of the low temperature Mg2Zn3 phase that formed in the reference alloy. The change in secondary phase formation coincided with significant enhancement in strength and ductility.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3