Engineering Neutron Diffraction Data Analysis with Inverse Neural Network Modeling

Author:

Denizer Baris1,Üstündag Ersan1,Ceylan Halil1,Li Li2,Lee Seung Yub2

Affiliation:

1. Iowa State University

2. Columbia University

Abstract

Integration of engineering neutron diffraction data analysis and solid mechanics modeling is a powerful method to deduce in-situ constitutive behavior of materials. Since diffraction data originates from spatially discrete subsets of the material volume, extrapolation of the data to the behavior of the overall sample is non-trivial. The finite element model has been widely used for interpreting diffraction data by optimizing model parameters via iterative processes. In order to maximize the rigor of such analysis and to increase fitting efficiency and accuracy, we have developed an optimization algorithm based on the neural network architecture. The inverse neural network model reveals parameter sensitivity quantitatively during a training process, and yields more accurate phase specific constitutive laws of the composite materials compared to the conventional method once networks are successfully trained.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PyXRF: Python-based X-ray fluorescence analysis package;X-Ray Nanoimaging: Instruments and Methods III;2017-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3