Microstructure and Texture Evolution of Fe-Si Steels after Hot Dipping and Diffusion Annealing

Author:

Danzo I. Infante1,Verbeken Kim1,Houbaert Yvan1

Affiliation:

1. Ghent University

Abstract

A homogenous intensity distribution along the cube texture fibre is important to achieve an easy magnetization in non-oriented electrical steels. Several alternatives have been discussed in literature to achieve this goal namely, tertiary recrystallization (surface energy controlled), decarburization annealing, two step cold rolling (strain induced boundary migration), twin-roll thin strip casting (directional solidification), phase transformation (surface energy anisotropy) and columnar grains formation (selective grain growth). In the present study, a hypoeutectic Al-Si alloy was deposited on the surface of cold rolled Fe-Si steels with a hot dipping simulator and subsequently annealed at 1000°C for different times. This procedure was developed previously in order to enrich the substrate with Al and/or Si and consequently improve their resistivity. Of specific interest was the formation of columnar grains in the low Fe-Si steel after annealing. These columnar grains were found to grow from the surface towards the centre of the substrate. The microstructure and texture in the columnar grains were significantly different than those in the middle of the material. Therefore, the evolution of these features during processing was studied in detail in this work.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3