Affiliation:
1. Nagoya Institute of Technology
Abstract
The training treatments in the shape memory alloy are known as useful method to improve the shape memory effect. In our previous study, it was shown that the training treatments can also improve both the damping capacity and the hardness of the Fe–Mn alloy. In this study, training effects on damping capacity in solution treated Mn-22.5mass%Cu-5.08mass%Ni-1.96mass%Fe alloy have been investigated. As training treatments, the thermal training (only thermal cycling) and the thermo-mechanical training (thermal cycling with deformation) are carried out. Internal friction was measured at room temperature (R. T.) using a free-decay method. Although training effect cannot be found for the samples trained at higher annealing temperature (600 °C and 700 °C), damping capacity of the alloy is improved by thermal training annealed at 400 °C and 500 °C. The trade-off between the damping capacity and mechanical properties can be overcome by the training at lower temperature.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献