Study of the Microstructure and Strain Induced Precipitation during Thermomechanical Processing of Low Carbon Microalloyed Steels

Author:

Gómez Manuel1,Valles Pilar2,Medina Sebastián F.1

Affiliation:

1. National Center for Metallurgical Research (CENIM-CSIC)

2. Instituto Nacional de Técnica Aeroespacial (INTA)

Abstract

A series of anisothermal multipass hot torsion tests were carried out to simulate hot rolling on three high-strength low-carbon steels with different amounts of Mn, Mo, Nb and Ti and designed for pipeline construction. Mean Flow Stress was graphically represented against the inverse of temperature to characterize the evolution of austenite microstructure during rolling. The effect of austenite strengthening obtained at the end of thermomechanical processing on the final microstructure obtained after cooling was studied. Higher levels of austenite strengthening before cooling promote a refinement of final microstructure but can also restrict the fraction of low-temperature transformation products such as acicular ferrite. This combined effect gives rise to a wide range of final microstructures and mechanical properties depending on the composition, processing schedule and cooling rates applied. On the other hand, the precipitation state obtained at diverse temperatures during and at the end of hot rolling schedule was evaluated by means of transmission electron microscopy (TEM) in two microalloyed steels. It was found that two families of precipitates with different morphology, composition and mean size can coexist in microalloyed steels.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3